References
Akaike, H. 1974. “A New Look at the Statistical Model
Identification.” IEEE Transactions on Automatic Control
19 (6): 716–23. https://doi.org/10.1109/TAC.1974.1100705.
Bessiere, Pierre, Emmanuel Mazer, Juan Manuel Ahuactzin, and Kamel
Mekhnacha. 2013. Bayesian Programming. 1 edition.
Boca Raton: Chapman; Hall/CRC. https://www.crcpress.com/Bayesian-Programming/Bessiere-Mazer-Ahuactzin-Mekhnacha/p/book/9781439880326.
Brockmann, H. Jane. 1996. “Satellite Male Groups in Horseshoe
Crabs, Limulus Polyphemus.” Ethology 102 (1): 1–21.
https://doi.org/https://doi.org/10.1111/j.1439-0310.1996.tb01099.x.
Chipman, Hugh A., Edward I. George, and Robert E. McCulloch. 2010.
“BART: Bayesian Additive Regression
Trees.” The Annals of Applied Statistics 4 (1): 266–98.
https://doi.org/10.1214/09-AOAS285.
Cleveland, William S., and Robert McGill. 1984. “Graphical
Perception: Theory, Experimentation, and Application to the Development
of Graphical Methods.” Journal of the American Statistical
Association 79 (387): 531–54. https://doi.org/10.1080/01621459.1984.10478080.
Daniel Roy. 2015. Probabilistic Programming. http://probabilistic-programming.org.
Diaconis, Persi. 2011. “Theories of Data
Analysis: From Magical
Thinking Through Classical
Statistics.” In Exploring Data
Tables, Trends, and Shapes,
1–36. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118150702.ch1.
Gelman, Andrew, Daniel Simpson, and Michael Betancourt. 2017. “The
Prior Can Often Only
Be Understood in the Context of
the Likelihood.” Entropy 19 (10): 555. https://doi.org/10.3390/e19100555.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob
Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian
Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” https://arxiv.org/abs/2011.01808.
Ghahramani, Zoubin. 2015. “Probabilistic Machine
Learning and Artificial
Intelligence.” Nature 521 (7553): 452–59.
https://doi.org/10.1038/nature14541.
Greenhill, Brian, Michael D. Ward, and Audrey Sacks. 2011. “The
Separation Plot: A New Visual Method for Evaluating the Fit of Binary
Models.” American Journal of Political Science 55 (4):
991–1002. https://doi.org/https://doi.org/10.1111/j.1540-5907.2011.00525.x.
Heer, Jeffrey, and Michael Bostock. 2010. “Crowdsourcing Graphical
Perception: Using Mechanical Turk to Assess Visualization
Design.” In Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems, 203–12.
CHI ’10. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/1753326.1753357.
Hoyer, Stephan, and Joe Hamman. 2017. “Xarray:
N-D Labeled Arrays
and Datasets in Python.” Journal of
Open Research Software 5 (1). https://doi.org/10.5334/jors.148.
Icazatti, Alejandro, Oriol Abril-Pla, Arto Klami, and Osvaldo A Martin.
2023. “PreliZ: A tool-box for prior
elicitation.” Journal of Open Source Software 8
(89): 5499. https://doi.org/10.21105/joss.05499.
Jaynes, E. T. 2003. Probability Theory:
The Logic of Science. Edited
by G. Larry Bretthorst. Cambridge, UK ; New York, NY: Cambridge
University Press.
Kallioinen, Noa, Topi Paananen, Paul-Christian Bürkner, and Aki Vehtari.
2023. “Detecting and Diagnosing Prior and Likelihood Sensitivity
with Power-Scaling.” Statistics and Computing 34 (1):
57. https://doi.org/10.1007/s11222-023-10366-5.
Kleiber, Christian, and Achim Zeileis. 2016. “Visualizing Count
Data Regressions Using Rootograms.” The American
Statistician 70 (3): 296–303. https://doi.org/10.1080/00031305.2016.1173590.
Link, William A., and Mitchell J. Eaton. 2012. “On Thinning of
Chains in MCMC.” Methods in Ecology and Evolution 3 (1):
112–15. https://doi.org/https://doi.org/10.1111/j.2041-210X.2011.00131.x.
MacEachern, Steven N., and L. Mark Berliner. 1994. “Subsampling
the Gibbs Sampler.” The American
Statistician 48 (3): 188–90. https://doi.org/10.2307/2684714.
Martin, Osvaldo A. 2024. Bayesian Analysis with
Python: A Practical
Guide to Probabilistic Modeling, 3rd
Edition. Packt Publishing.
Martin, Osvaldo A., Ravin Kumar, and Junpeng Lao. 2021. Bayesian
Modeling and Computation in
Python. 1st edition. Boca Raton London New York:
Chapman; Hall/CRC.
McLatchie, Yann, Sölvi Rögnvaldsson, Frank Weber, and Aki Vehtari. 2023.
“Robust and Efficient Projection Predictive Inference.” https://arxiv.org/abs/2306.15581.
Mikkola, Petrus, Osvaldo A. Martin, Suyog Chandramouli, Marcelo
Hartmann, Oriol Abril Pla, Owen Thomas, Henri Pesonen, et al. 2024.
“Prior Knowledge Elicitation: The Past,
Present, and Future.” Bayesian Analysis 19 (4):
1129–61. https://doi.org/10.1214/23-BA1381.
Morris, David E., Jeremy E. Oakley, and John A. Crowe. 2014. “A
Web-Based Tool for Eliciting Probability Distributions from
Experts.” Environmental Modelling & Software 52:
1–4. https://doi.org/https://doi.org/10.1016/j.envsoft.2013.10.010.
Piironen, Juho, Markus Paasiniemi, and Aki Vehtari. 2020. “Projective inference in high-dimensional problems:
Prediction and feature selection.” Electronic Journal
of Statistics 14 (1): 2155–97. https://doi.org/10.1214/20-EJS1711.
Quiroga, Miriana, Pablo G Garay, Juan M. Alonso, Juan Martin Loyola, and
Osvaldo A Martin. 2022. “Bayesian Additive Regression Trees for
Probabilistic Programming.” arXiv. https://doi.org/10.48550/ARXIV.2206.03619.
Säilynoja, Teemu, Paul-Christian Bürkner, and Aki Vehtari. 2022.
“Graphical Test for Discrete Uniformity and Its Applications in
Goodness-of-Fit Evaluation and Multiple Sample Comparison.”
Statistics and Computing 32 (2): 32. https://doi.org/10.1007/s11222-022-10090-6.
Talts, Sean, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew
Gelman. 2020. “Validating Bayesian Inference Algorithms with
Simulation-Based Calibration.” https://arxiv.org/abs/1804.06788.
Tukey, John W. 1977. Exploratory Data
Analysis. 1 edition. Pearson.
Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. “Practical
Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and
WAIC.” Statistics and Computing 27 (5): 1413–32. https://doi.org/10.1007/s11222-016-9696-4.
Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and
Paul-Christian Bürkner. 2021. “Rank-Normalization, Folding, and Localization: An
Improved R̂ for Assessing
Convergence of MCMC (with Discussion).” Bayesian
Analysis 16 (2): 667–718. https://doi.org/10.1214/20-BA1221.
Watanabe, Sumio. 2013. “A Widely
Applicable Bayesian Information
Criterion.” Journal of Machine Learning
Research 14 (March): 867–97.
Yao, Yuling, Aki Vehtari, Daniel Simpson, and Andrew Gelman. 2018.
“Using Stacking to Average Bayesian
Predictive Distributions (with Discussion).” Bayesian
Analysis 13 (3): 917–1007. https://doi.org/10.1214/17-BA1091.