References
Akaike, H. 1974. “A New Look at the Statistical Model
Identification.” IEEE Transactions on Automatic Control
19 (6): 716–23. https://doi.org/10.1109/TAC.1974.1100705.
Ayer, Miriam, H. D. Brunk, G. M. Ewing, W. T. Reid, and Edward
Silverman. 1955. “An Empirical Distribution
Function for Sampling with Incomplete Information.”
The Annals of Mathematical Statistics 26 (4): 641–47. https://doi.org/10.1214/aoms/1177728423.
Bessiere, Pierre, Emmanuel Mazer, Juan Manuel Ahuactzin, and Kamel
Mekhnacha. 2013. Bayesian Programming. 1 edition.
Boca Raton: Chapman; Hall/CRC. https://www.crcpress.com/Bayesian-Programming/Bessiere-Mazer-Ahuactzin-Mekhnacha/p/book/9781439880326.
Brockmann, H. Jane. 1996. “Satellite Male Groups in Horseshoe
Crabs, Limulus Polyphemus.” Ethology 102 (1): 1–21. https://doi.org/10.1111/j.1439-0310.1996.tb01099.x.
Brooks, Steve, Andrew Gelman, Galin Jones, and Xiao-Li Meng, eds. 2011.
Handbook of Markov Chain
Monte Carlo. 1 edition. Boca Raton:
Chapman; Hall/CRC.
Chipman, Hugh A., Edward I. George, and Robert E. McCulloch. 2010.
“BART: Bayesian Additive Regression
Trees.” The Annals of Applied Statistics 4 (1): 266–98.
https://doi.org/10.1214/09-AOAS285.
Cleveland, William S., and Robert McGill. 1984. “Graphical
Perception: Theory, Experimentation, and Application to the Development
of Graphical Methods.” Journal of the American Statistical
Association 79 (387): 531–54. https://doi.org/10.1080/01621459.1984.10478080.
Cook, Samantha R, Andrew Gelman, and Donald B Rubin and. 2006.
“Validation of Software for Bayesian Models Using Posterior
Quantiles.” Journal of Computational and Graphical
Statistics 15 (3): 675–92. https://doi.org/10.1198/106186006X136976.
Daniel Roy. 2015. Probabilistic Programming. http://probabilistic-programming.org.
Diaconis, Persi. 2011. “Theories of Data
Analysis: From Magical
Thinking Through Classical
Statistics.” In Exploring Data
Tables, Trends, and Shapes,
1–36. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118150702.ch1.
Dimitriadis, Timo, Tilmann Gneiting, and Alexander I. Jordan. 2021.
“Stable Reliability Diagrams for Probabilistic
Classifiers.” Proceedings of the National Academy of
Sciences 118 (8): e2016191118. https://doi.org/10.1073/pnas.2016191118.
Downey, Allen B. 2025. Think Stats:
Exploratory Data Analysis.
Sebastopol: O’Reilly Media.
Fernandes, Michael, Logan Walls, Sean Munson, Jessica Hullman, and
Matthew Kay. 2018. “Uncertainty Displays
Using Quantile Dotplots or
CDFs Improve Transit
Decision-Making.” In Proceedings of
the 2018 CHI Conference on Human
Factors in Computing
Systems, 1–12. CHI ’18. New York, NY,
USA: Association for Computing Machinery. https://doi.org/10.1145/3173574.3173718.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and
Andrew Gelman. 2019. “Visualization in Bayesian Workflow.”
Journal of the Royal Statistical Society Series A: Statistics in
Society 182 (2): 389–402. https://doi.org/10.1111/rssa.12378.
Gelman, Andrew. 2013. “Two simple examples
for understanding posterior p-values whose distributions are far from
uniform.” Electronic Journal of Statistics 7
(none): 2595–2602. https://doi.org/10.1214/13-EJS854.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2013. Bayesian Data
Analysis. Boca Raton.
Gelman, Andrew, Daniel Simpson, and Michael Betancourt. 2017. “The
Prior Can Often Only
Be Understood in the Context of
the Likelihood.” Entropy 19 (10): 555. https://doi.org/10.3390/e19100555.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob
Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian
Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” https://arxiv.org/abs/2011.01808.
Ghahramani, Zoubin. 2015. “Probabilistic Machine
Learning and Artificial
Intelligence.” Nature 521 (7553): 452–59.
https://doi.org/10.1038/nature14541.
Healy, Kieran. 2019. Data Visualization: A
Practical Introduction. Princeton, New
Jersey ; Oxford, Oxfordshire: Princeton University Press.
Heer, Jeffrey, and Michael Bostock. 2010. “Crowdsourcing Graphical
Perception: Using Mechanical Turk to Assess Visualization
Design.” In Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems, 203–12.
CHI ’10. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/1753326.1753357.
Hoyer, Stephan, and Joe Hamman. 2017. “Xarray:
N-D Labeled Arrays
and Datasets in Python.” Journal of
Open Research Software 5 (1). https://doi.org/10.5334/jors.148.
Icazatti, Alejandro, Oriol Abril-Pla, Arto Klami, and Osvaldo A Martin.
2023. “PreliZ: A tool-box for prior
elicitation.” Journal of Open Source Software 8
(89): 5499. https://doi.org/10.21105/joss.05499.
Jaynes, E. T. 2003. Probability Theory:
The Logic of Science. Edited
by G. Larry Bretthorst. Cambridge, UK ; New York, NY: Cambridge
University Press. https://bayes.wustl.edu/etj/prob/book.pdf.
Johnson, Roger W. 1996. “Fitting Percentage of Body Fat to Simple
Body Measurements.” Journal of Statistics Education 4
(1). https://doi.org/10.1080/10691898.1996.11910505.
Kallioinen, Noa, Topi Paananen, Paul-Christian Bürkner, and Aki Vehtari.
2023. “Detecting and Diagnosing Prior and Likelihood Sensitivity
with Power-Scaling.” Statistics and Computing 34 (1):
57. https://doi.org/10.1007/s11222-023-10366-5.
Kay, Matthew, Tara Kola, Jessica R. Hullman, and Sean A. Munson. 2016.
“When (Ish) Is My Bus?
User-Centered Visualizations of
Uncertainty in Everyday, Mobile
Predictive Systems.” In Proceedings
of the 2016 CHI Conference on
Human Factors in Computing
Systems, 5092–5103. CHI ’16. New York,
NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2858036.2858558.
Kleiber, Christian, and Achim Zeileis. 2016. “Visualizing Count
Data Regressions Using Rootograms.” The American
Statistician 70 (3): 296–303. https://doi.org/10.1080/00031305.2016.1173590.
Kruschke, John K. 2021. “Bayesian Analysis
Reporting Guidelines.” Nature Human
Behaviour 5 (10): 1282–91. https://doi.org/10.1038/s41562-021-01177-7.
Link, William A., and Mitchell J. Eaton. 2012. “On Thinning of
Chains in MCMC.” Methods in Ecology and Evolution 3 (1):
112–15. https://doi.org/10.1111/j.2041-210X.2011.00131.x.
MacEachern, Steven N., and L. Mark Berliner. 1994. “Subsampling
the Gibbs Sampler.” The American
Statistician 48 (3): 188–90. https://doi.org/10.2307/2684714.
Martin, Osvaldo A., Ravin Kumar, and Junpeng Lao. 2021. Bayesian
Modeling and Computation in
Python. 1st edition. Boca Raton London New York:
Chapman; Hall/CRC. https://bayesiancomputationbook.com/.
Martin, Osvaldo A., and François P. Teste. 2022. “A Call for
Changing Data Analysis Practices: From Philosophy and Comprehensive
Reporting to Modeling Approaches and Back.” Plant and
Soil 476 (1): 743–53. https://doi.org/10.1007/s11104-022-05329-0.
McLatchie, Yann, Sölvi Rögnvaldsson, Frank Weber, and Aki Vehtari. 2023.
“Robust and Efficient Projection Predictive Inference.” https://arxiv.org/abs/2306.15581.
Meng, Xiao-Li. 1994. “Posterior Predictive p-Values.” The
Annals of Statistics 22 (3): 1142–60. https://doi.org/10.1214/aos/1176325622.
Mikkola, Petrus, Osvaldo A. Martin, Suyog Chandramouli, Marcelo
Hartmann, Oriol Abril Pla, Owen Thomas, Henri Pesonen, et al. 2024.
“Prior Knowledge Elicitation: The Past, Present, and
Future.” Bayesian Analysis 19 (4): 1129–61. https://doi.org/10.1214/23-BA1381.
Modrák, Martin, Angie H. Moon, Shinyoung Kim, Paul Bürkner, Niko Huurre,
Kateřina Faltejsková, Andrew Gelman, and Aki Vehtari. 2025. “Simulation-Based Calibration Checking for Bayesian
Computation: The Choice of Test Quantities Shapes
Sensitivity.” Bayesian Analysis 20 (2): 461–88.
https://doi.org/10.1214/23-BA1404.
Morris, David E., Jeremy E. Oakley, and John A. Crowe. 2014. “A
Web-Based Tool for Eliciting Probability Distributions from
Experts.” Environmental Modelling & Software 52:
1–4. https://doi.org/10.1016/j.envsoft.2013.10.010.
Nguyen, Hoang-Vu, and Jilles Vreeken. 2015. “Non-Parametric
Jensen-Shannon Divergence.” In Machine Learning and Knowledge
Discovery in Databases, edited by Annalisa Appice, Pedro Pereira
Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, and Carlos
Soares, 173–89. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-23525-7_11.
Piironen, Juho, Markus Paasiniemi, and Aki Vehtari. 2020. “Projective inference in high-dimensional problems:
Prediction and feature selection.” Electronic Journal
of Statistics 14 (1): 2155–97. https://doi.org/10.1214/20-EJS1711.
Quiroga, Miriana, Pablo G Garay, Juan M. Alonso, Juan Martin Loyola, and
Osvaldo A Martin. 2022. “Bayesian Additive Regression Trees for
Probabilistic Programming.” arXiv. https://doi.org/10.48550/ARXIV.2206.03619.
Säilynoja, Teemu, Paul-Christian Bürkner, and Aki Vehtari. 2022.
“Graphical Test for Discrete Uniformity and Its Applications in
Goodness-of-Fit Evaluation and Multiple Sample Comparison.”
Statistics and Computing 32 (2): 32. https://doi.org/10.1007/s11222-022-10090-6.
Säilynoja, Teemu, Andrew R. Johnson, Osvaldo A. Martin, and Aki Vehtari.
2025. “Recommendations for Visual Predictive Checks in Bayesian
Workflow.” https://arxiv.org/abs/2503.01509.
Säilynoja, Teemu, Marvin Schmitt, Paul-Christian Bürkner, and Aki
Vehtari. 2025. “Posterior SBC: Simulation-Based Calibration
Checking Conditional on Data.” https://arxiv.org/abs/2502.03279.
Tadesse, Mahlet G., and Marina Vannucci, eds. 2022. Handbook of
Bayesian Variable Selection.
Boca Raton: Chapman; Hall/CRC.
Talts, Sean, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew
Gelman. 2020. “Validating Bayesian Inference Algorithms with
Simulation-Based Calibration.” https://arxiv.org/abs/1804.06788.
Tukey, John W. 1977. Exploratory Data
Analysis. 1 edition. Pearson.
Unwin, Antony. 2024. Getting (More Out of) Graphics:
Practice and Principles of Data
Visualisation. Boca Raton: Chapman; Hall/CRC.
Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. “Practical
Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and
WAIC.” Statistics and Computing 27 (5): 1413–32. https://doi.org/10.1007/s11222-016-9696-4.
Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and
Paul-Christian Bürkner. 2021. “Rank-Normalization, Folding, and Localization: An
Improved R̂ for Assessing
Convergence of MCMC (with Discussion).” Bayesian
Analysis 16 (2): 667–718. https://doi.org/10.1214/20-BA1221.
Venables, W. N., and B. D. Ripley. 2002. Modern Applied
Statistics with S. 4th edition. New York:
Springer. https://doi.org/10.1007/978-0-387-21706-2.
Watanabe, Sumio. 2013. “A Widely
Applicable Bayesian Information
Criterion.” Journal of Machine Learning
Research 14 (March): 867–97. https://dl.acm.org/doi/10.5555/2567709.2502609.
Wilke, Claus O. 2019. Fundamentals of Data
Visualization: A Primer on
Making Informative and Compelling
Figures. Beijing Boston Farnham Sebastopol Tokyo:
O’Reilly Media.
Wilkinson, Leland. 1999. “Dot Plots.” The
American Statistician 53 (3): 276–81. https://doi.org/10.1080/00031305.1999.10474474.
Yao, Yuling, Aki Vehtari, Daniel Simpson, and Andrew Gelman. 2018.
“Using Stacking to Average Bayesian
Predictive Distributions (with Discussion).” Bayesian
Analysis 13 (3): 917–1007. https://doi.org/10.1214/17-BA1091.