References

Akaike, H. 1974. “A New Look at the Statistical Model Identification.” IEEE Transactions on Automatic Control 19 (6): 716–23. https://doi.org/10.1109/TAC.1974.1100705.
Ayer, Miriam, H. D. Brunk, G. M. Ewing, W. T. Reid, and Edward Silverman. 1955. An Empirical Distribution Function for Sampling with Incomplete Information.” The Annals of Mathematical Statistics 26 (4): 641–47. https://doi.org/10.1214/aoms/1177728423.
Bessiere, Pierre, Emmanuel Mazer, Juan Manuel Ahuactzin, and Kamel Mekhnacha. 2013. Bayesian Programming. 1 edition. Boca Raton: Chapman; Hall/CRC. https://www.crcpress.com/Bayesian-Programming/Bessiere-Mazer-Ahuactzin-Mekhnacha/p/book/9781439880326.
Brockmann, H. Jane. 1996. “Satellite Male Groups in Horseshoe Crabs, Limulus Polyphemus.” Ethology 102 (1): 1–21. https://doi.org/10.1111/j.1439-0310.1996.tb01099.x.
Brooks, Steve, Andrew Gelman, Galin Jones, and Xiao-Li Meng, eds. 2011. Handbook of Markov Chain Monte Carlo. 1 edition. Boca Raton: Chapman; Hall/CRC.
Chipman, Hugh A., Edward I. George, and Robert E. McCulloch. 2010. BART: Bayesian Additive Regression Trees.” The Annals of Applied Statistics 4 (1): 266–98. https://doi.org/10.1214/09-AOAS285.
Cleveland, William S., and Robert McGill. 1984. “Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods.” Journal of the American Statistical Association 79 (387): 531–54. https://doi.org/10.1080/01621459.1984.10478080.
Cook, Samantha R, Andrew Gelman, and Donald B Rubin and. 2006. “Validation of Software for Bayesian Models Using Posterior Quantiles.” Journal of Computational and Graphical Statistics 15 (3): 675–92. https://doi.org/10.1198/106186006X136976.
Daniel Roy. 2015. Probabilistic Programming. http://probabilistic-programming.org.
Diaconis, Persi. 2011. “Theories of Data Analysis: From Magical Thinking Through Classical Statistics.” In Exploring Data Tables, Trends, and Shapes, 1–36. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118150702.ch1.
Dimitriadis, Timo, Tilmann Gneiting, and Alexander I. Jordan. 2021. “Stable Reliability Diagrams for Probabilistic Classifiers.” Proceedings of the National Academy of Sciences 118 (8): e2016191118. https://doi.org/10.1073/pnas.2016191118.
Downey, Allen B. 2025. Think Stats: Exploratory Data Analysis. Sebastopol: O’Reilly Media.
Fernandes, Michael, Logan Walls, Sean Munson, Jessica Hullman, and Matthew Kay. 2018. “Uncertainty Displays Using Quantile Dotplots or CDFs Improve Transit Decision-Making.” In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–12. CHI ’18. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3173574.3173718.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. 2019. “Visualization in Bayesian Workflow.” Journal of the Royal Statistical Society Series A: Statistics in Society 182 (2): 389–402. https://doi.org/10.1111/rssa.12378.
Gelman, Andrew. 2013. Two simple examples for understanding posterior p-values whose distributions are far from uniform.” Electronic Journal of Statistics 7 (none): 2595–2602. https://doi.org/10.1214/13-EJS854.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. Boca Raton.
Gelman, Andrew, Daniel Simpson, and Michael Betancourt. 2017. “The Prior Can Often Only Be Understood in the Context of the Likelihood.” Entropy 19 (10): 555. https://doi.org/10.3390/e19100555.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” https://arxiv.org/abs/2011.01808.
Ghahramani, Zoubin. 2015. “Probabilistic Machine Learning and Artificial Intelligence.” Nature 521 (7553): 452–59. https://doi.org/10.1038/nature14541.
Healy, Kieran. 2019. Data Visualization: A Practical Introduction. Princeton, New Jersey ; Oxford, Oxfordshire: Princeton University Press.
Heer, Jeffrey, and Michael Bostock. 2010. “Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 203–12. CHI ’10. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/1753326.1753357.
Hoyer, Stephan, and Joe Hamman. 2017. “Xarray: N-D Labeled Arrays and Datasets in Python.” Journal of Open Research Software 5 (1). https://doi.org/10.5334/jors.148.
Icazatti, Alejandro, Oriol Abril-Pla, Arto Klami, and Osvaldo A Martin. 2023. PreliZ: A tool-box for prior elicitation.” Journal of Open Source Software 8 (89): 5499. https://doi.org/10.21105/joss.05499.
Jaynes, E. T. 2003. Probability Theory: The Logic of Science. Edited by G. Larry Bretthorst. Cambridge, UK ; New York, NY: Cambridge University Press. https://bayes.wustl.edu/etj/prob/book.pdf.
Johnson, Roger W. 1996. “Fitting Percentage of Body Fat to Simple Body Measurements.” Journal of Statistics Education 4 (1). https://doi.org/10.1080/10691898.1996.11910505.
Kallioinen, Noa, Topi Paananen, Paul-Christian Bürkner, and Aki Vehtari. 2023. “Detecting and Diagnosing Prior and Likelihood Sensitivity with Power-Scaling.” Statistics and Computing 34 (1): 57. https://doi.org/10.1007/s11222-023-10366-5.
Kay, Matthew, Tara Kola, Jessica R. Hullman, and Sean A. Munson. 2016. “When (Ish) Is My Bus? User-Centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems.” In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 5092–5103. CHI ’16. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2858036.2858558.
Kleiber, Christian, and Achim Zeileis. 2016. “Visualizing Count Data Regressions Using Rootograms.” The American Statistician 70 (3): 296–303. https://doi.org/10.1080/00031305.2016.1173590.
Kruschke, John K. 2021. “Bayesian Analysis Reporting Guidelines.” Nature Human Behaviour 5 (10): 1282–91. https://doi.org/10.1038/s41562-021-01177-7.
Link, William A., and Mitchell J. Eaton. 2012. “On Thinning of Chains in MCMC.” Methods in Ecology and Evolution 3 (1): 112–15. https://doi.org/10.1111/j.2041-210X.2011.00131.x.
MacEachern, Steven N., and L. Mark Berliner. 1994. “Subsampling the Gibbs Sampler.” The American Statistician 48 (3): 188–90. https://doi.org/10.2307/2684714.
Martin, Osvaldo A., Ravin Kumar, and Junpeng Lao. 2021. Bayesian Modeling and Computation in Python. 1st edition. Boca Raton London New York: Chapman; Hall/CRC. https://bayesiancomputationbook.com/.
Martin, Osvaldo A., and François P. Teste. 2022. “A Call for Changing Data Analysis Practices: From Philosophy and Comprehensive Reporting to Modeling Approaches and Back.” Plant and Soil 476 (1): 743–53. https://doi.org/10.1007/s11104-022-05329-0.
McLatchie, Yann, Sölvi Rögnvaldsson, Frank Weber, and Aki Vehtari. 2023. “Robust and Efficient Projection Predictive Inference.” https://arxiv.org/abs/2306.15581.
Meng, Xiao-Li. 1994. Posterior Predictive p-Values.” The Annals of Statistics 22 (3): 1142–60. https://doi.org/10.1214/aos/1176325622.
Mikkola, Petrus, Osvaldo A. Martin, Suyog Chandramouli, Marcelo Hartmann, Oriol Abril Pla, Owen Thomas, Henri Pesonen, et al. 2024. “Prior Knowledge Elicitation: The Past, Present, and Future.” Bayesian Analysis 19 (4): 1129–61. https://doi.org/10.1214/23-BA1381.
Modrák, Martin, Angie H. Moon, Shinyoung Kim, Paul Bürkner, Niko Huurre, Kateřina Faltejsková, Andrew Gelman, and Aki Vehtari. 2025. Simulation-Based Calibration Checking for Bayesian Computation: The Choice of Test Quantities Shapes Sensitivity.” Bayesian Analysis 20 (2): 461–88. https://doi.org/10.1214/23-BA1404.
Morris, David E., Jeremy E. Oakley, and John A. Crowe. 2014. “A Web-Based Tool for Eliciting Probability Distributions from Experts.” Environmental Modelling & Software 52: 1–4. https://doi.org/10.1016/j.envsoft.2013.10.010.
Nguyen, Hoang-Vu, and Jilles Vreeken. 2015. “Non-Parametric Jensen-Shannon Divergence.” In Machine Learning and Knowledge Discovery in Databases, edited by Annalisa Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, and Carlos Soares, 173–89. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-23525-7_11.
Piironen, Juho, Markus Paasiniemi, and Aki Vehtari. 2020. Projective inference in high-dimensional problems: Prediction and feature selection.” Electronic Journal of Statistics 14 (1): 2155–97. https://doi.org/10.1214/20-EJS1711.
Quiroga, Miriana, Pablo G Garay, Juan M. Alonso, Juan Martin Loyola, and Osvaldo A Martin. 2022. “Bayesian Additive Regression Trees for Probabilistic Programming.” arXiv. https://doi.org/10.48550/ARXIV.2206.03619.
Säilynoja, Teemu, Paul-Christian Bürkner, and Aki Vehtari. 2022. “Graphical Test for Discrete Uniformity and Its Applications in Goodness-of-Fit Evaluation and Multiple Sample Comparison.” Statistics and Computing 32 (2): 32. https://doi.org/10.1007/s11222-022-10090-6.
Säilynoja, Teemu, Andrew R. Johnson, Osvaldo A. Martin, and Aki Vehtari. 2025. “Recommendations for Visual Predictive Checks in Bayesian Workflow.” https://arxiv.org/abs/2503.01509.
Säilynoja, Teemu, Marvin Schmitt, Paul-Christian Bürkner, and Aki Vehtari. 2025. “Posterior SBC: Simulation-Based Calibration Checking Conditional on Data.” https://arxiv.org/abs/2502.03279.
Tadesse, Mahlet G., and Marina Vannucci, eds. 2022. Handbook of Bayesian Variable Selection. Boca Raton: Chapman; Hall/CRC.
Talts, Sean, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. 2020. “Validating Bayesian Inference Algorithms with Simulation-Based Calibration.” https://arxiv.org/abs/1804.06788.
Tukey, John W. 1977. Exploratory Data Analysis. 1 edition. Pearson.
Unwin, Antony. 2024. Getting (More Out of) Graphics: Practice and Principles of Data Visualisation. Boca Raton: Chapman; Hall/CRC.
Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. “Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and WAIC.” Statistics and Computing 27 (5): 1413–32. https://doi.org/10.1007/s11222-016-9696-4.
Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. 2021. Rank-Normalization, Folding, and Localization: An Improved for Assessing Convergence of MCMC (with Discussion).” Bayesian Analysis 16 (2): 667–718. https://doi.org/10.1214/20-BA1221.
Venables, W. N., and B. D. Ripley. 2002. Modern Applied Statistics with S. 4th edition. New York: Springer. https://doi.org/10.1007/978-0-387-21706-2.
Watanabe, Sumio. 2013. “A Widely Applicable Bayesian Information Criterion.” Journal of Machine Learning Research 14 (March): 867–97. https://dl.acm.org/doi/10.5555/2567709.2502609.
Wilke, Claus O. 2019. Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. Beijing Boston Farnham Sebastopol Tokyo: O’Reilly Media.
Wilkinson, Leland. 1999. “Dot Plots.” The American Statistician 53 (3): 276–81. https://doi.org/10.1080/00031305.1999.10474474.
Yao, Yuling, Aki Vehtari, Daniel Simpson, and Andrew Gelman. 2018. Using Stacking to Average Bayesian Predictive Distributions (with Discussion).” Bayesian Analysis 13 (3): 917–1007. https://doi.org/10.1214/17-BA1091.