References
Akaike, H. 1974. “A New Look at the Statistical Model
Identification.” IEEE Transactions on Automatic Control
19 (6): 716–23. https://doi.org/10.1109/TAC.1974.1100705.
Ayer, Miriam, H. D. Brunk, G. M. Ewing, W. T. Reid, and Edward
Silverman. 1955. “An Empirical Distribution
Function for Sampling with Incomplete Information.”
The Annals of Mathematical Statistics 26 (4): 641–47. https://doi.org/10.1214/aoms/1177728423.
Bessiere, Pierre, Emmanuel Mazer, Juan Manuel Ahuactzin, and Kamel
Mekhnacha. 2013. Bayesian Programming. 1 edition.
Boca Raton: Chapman; Hall/CRC. https://www.crcpress.com/Bayesian-Programming/Bessiere-Mazer-Ahuactzin-Mekhnacha/p/book/9781439880326.
Brockmann, H. Jane. 1996. “Satellite Male Groups in Horseshoe
Crabs, Limulus Polyphemus.” Ethology 102 (1): 1–21. https://doi.org/10.1111/j.1439-0310.1996.tb01099.x.
Brooks, Steve, Andrew Gelman, Galin Jones, and Xiao-Li Meng, eds. 2011.
Handbook of Markov Chain
Monte Carlo. 1 edition. Boca Raton:
Chapman; Hall/CRC. https://doi.org/10.1201/b10905.
Chipman, Hugh A., Edward I. George, and Robert E. McCulloch. 2010.
“BART: Bayesian Additive Regression
Trees.” The Annals of Applied Statistics 4 (1): 266–98.
https://doi.org/10.1214/09-AOAS285.
Cleveland, William S., and Robert McGill. 1984. “Graphical
Perception: Theory, Experimentation, and Application to the Development
of Graphical Methods.” Journal of the American Statistical
Association 79 (387): 531–54. https://doi.org/10.1080/01621459.1984.10478080.
Cook, Samantha R, Andrew Gelman, and Donald B Rubin and. 2006.
“Validation of Software for Bayesian Models Using Posterior
Quantiles.” Journal of Computational and Graphical
Statistics 15 (3): 675–92. https://doi.org/10.1198/106186006X136976.
Daniel Roy. 2015. Probabilistic Programming. http://probabilistic-programming.org.
Diaconis, Persi. 2011. “Theories of Data
Analysis: From Magical
Thinking Through Classical
Statistics.” In Exploring Data
Tables, Trends, and Shapes,
1–36. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118150702.ch1.
Dimitriadis, Timo, Tilmann Gneiting, and Alexander I. Jordan. 2021.
“Stable Reliability Diagrams for Probabilistic
Classifiers.” Proceedings of the National Academy of
Sciences 118 (8): e2016191118. https://doi.org/10.1073/pnas.2016191118.
Downey, Allen B. 2025. Think Stats:
Exploratory Data Analysis.
Sebastopol: O’Reilly Media. https://allendowney.github.io/ThinkStats/.
Fernandes, Michael, Logan Walls, Sean Munson, Jessica Hullman, and
Matthew Kay. 2018. “Uncertainty Displays
Using Quantile Dotplots or
CDFs Improve Transit
Decision-Making.” In Proceedings of
the 2018 CHI Conference on Human
Factors in Computing
Systems, 1–12. CHI ’18. New York, NY,
USA: Association for Computing Machinery. https://doi.org/10.1145/3173574.3173718.
Gabry, Jonah, Daniel Simpson, Aki Vehtari, Michael Betancourt, and
Andrew Gelman. 2019. “Visualization in Bayesian Workflow.”
Journal of the Royal Statistical Society Series A: Statistics in
Society 182 (2): 389–402. https://doi.org/10.1111/rssa.12378.
Gelman, Andrew. 2013. “Two simple examples
for understanding posterior p-values whose distributions are far from
uniform.” Electronic Journal of Statistics 7
(none): 2595–2602. https://doi.org/10.1214/13-EJS854.
Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2013. Bayesian Data
Analysis. Boca Raton. https://doi.org/10.1201/b16018.
Gelman, Andrew, Daniel Simpson, and Michael Betancourt. 2017. “The
Prior Can Often Only
Be Understood in the Context of
the Likelihood.” Entropy 19 (10): 555. https://doi.org/10.3390/e19100555.
Gelman, Andrew, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob
Carpenter, Yuling Yao, Lauren Kennedy, Jonah Gabry, Paul-Christian
Bürkner, and Martin Modrák. 2020. “Bayesian Workflow.” https://arxiv.org/abs/2011.01808.
Ghahramani, Zoubin. 2015. “Probabilistic Machine
Learning and Artificial
Intelligence.” Nature 521 (7553): 452–59.
https://doi.org/10.1038/nature14541.
Healy, Kieran. 2019. Data Visualization: A
Practical Introduction. Princeton, New
Jersey ; Oxford, Oxfordshire: Princeton University Press. https://kieranhealy.org/publications/dataviz/.
Heer, Jeffrey, and Michael Bostock. 2010. “Crowdsourcing Graphical
Perception: Using Mechanical Turk to Assess Visualization
Design.” In Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems, 203–12.
CHI ’10. New York, NY, USA: Association for Computing
Machinery. https://doi.org/10.1145/1753326.1753357.
Hoyer, Stephan, and Joe Hamman. 2017. “Xarray:
N-D Labeled Arrays
and Datasets in Python.” Journal of
Open Research Software 5 (1). https://doi.org/10.5334/jors.148.
Icazatti, Alejandro, Oriol Abril-Pla, Arto Klami, and Osvaldo A Martin.
2023. “PreliZ: A tool-box for prior
elicitation.” Journal of Open Source Software 8
(89): 5499. https://doi.org/10.21105/joss.05499.
Jaynes, E. T. 2003. Probability Theory:
The Logic of Science. Edited
by G. Larry Bretthorst. Cambridge, UK ; New York, NY: Cambridge
University Press. https://bayes.wustl.edu/etj/prob/book.pdf.
Johnson, Roger W. 1996. “Fitting Percentage of Body Fat to Simple
Body Measurements.” Journal of Statistics Education 4
(1). https://doi.org/10.1080/10691898.1996.11910505.
Kallioinen, Noa, Topi Paananen, Paul-Christian Bürkner, and Aki Vehtari.
2023. “Detecting and Diagnosing Prior and Likelihood Sensitivity
with Power-Scaling.” Statistics and Computing 34 (1):
57. https://doi.org/10.1007/s11222-023-10366-5.
Kay, Matthew, Tara Kola, Jessica R. Hullman, and Sean A. Munson. 2016.
“When (Ish) Is My Bus?
User-Centered Visualizations of
Uncertainty in Everyday, Mobile
Predictive Systems.” In Proceedings
of the 2016 CHI Conference on
Human Factors in Computing
Systems, 5092–5103. CHI ’16. New York,
NY, USA: Association for Computing Machinery. https://doi.org/10.1145/2858036.2858558.
Kleiber, Christian, and Achim Zeileis. 2016. “Visualizing Count
Data Regressions Using Rootograms.” The American
Statistician 70 (3): 296–303. https://doi.org/10.1080/00031305.2016.1173590.
Kruschke, John K. 2021. “Bayesian Analysis
Reporting Guidelines.” Nature Human
Behaviour 5 (10): 1282–91. https://doi.org/10.1038/s41562-021-01177-7.
Link, William A., and Mitchell J. Eaton. 2012. “On Thinning of
Chains in MCMC.” Methods in Ecology and Evolution 3 (1):
112–15. https://doi.org/10.1111/j.2041-210X.2011.00131.x.
MacEachern, Steven N., and L. Mark Berliner. 1994. “Subsampling
the Gibbs Sampler.” The American
Statistician 48 (3): 188–90. https://doi.org/10.2307/2684714.
Martin, Osvaldo A., Ravin Kumar, and Junpeng Lao. 2021. Bayesian
Modeling and Computation in
Python. 1st edition. Boca Raton London New York:
Chapman; Hall/CRC. https://bayesiancomputationbook.com/.
Martin, Osvaldo A., and François P. Teste. 2022. “A Call for
Changing Data Analysis Practices: From Philosophy and Comprehensive
Reporting to Modeling Approaches and Back.” Plant and
Soil 476 (1): 743–53. https://doi.org/10.1007/s11104-022-05329-0.
McLatchie, Yann, Sölvi Rögnvaldsson, Frank Weber, and Aki Vehtari. 2023.
“Robust and Efficient Projection Predictive Inference.” https://arxiv.org/abs/2306.15581.
Meng, Xiao-Li. 1994. “Posterior Predictive p-Values.” The
Annals of Statistics 22 (3): 1142–60. https://doi.org/10.1214/aos/1176325622.
Mikkola, Petrus, Osvaldo A. Martin, Suyog Chandramouli, Marcelo
Hartmann, Oriol Abril Pla, Owen Thomas, Henri Pesonen, et al. 2024.
“Prior Knowledge Elicitation: The Past, Present, and
Future.” Bayesian Analysis 19 (4): 1129–61. https://doi.org/10.1214/23-BA1381.
Modrák, Martin, Angie H. Moon, Shinyoung Kim, Paul Bürkner, Niko Huurre,
Kateřina Faltejsková, Andrew Gelman, and Aki Vehtari. 2025. “Simulation-Based Calibration Checking for Bayesian
Computation: The Choice of Test Quantities Shapes
Sensitivity.” Bayesian Analysis 20 (2): 461–88.
https://doi.org/10.1214/23-BA1404.
Morris, David E., Jeremy E. Oakley, and John A. Crowe. 2014. “A
Web-Based Tool for Eliciting Probability Distributions from
Experts.” Environmental Modelling & Software 52:
1–4. https://doi.org/10.1016/j.envsoft.2013.10.010.
Nguyen, Hoang-Vu, and Jilles Vreeken. 2015. “Non-Parametric
Jensen-Shannon Divergence.” In Machine Learning and Knowledge
Discovery in Databases, edited by Annalisa Appice, Pedro Pereira
Rodrigues, Vítor Santos Costa, João Gama, Alípio Jorge, and Carlos
Soares, 173–89. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-23525-7_11.
Piironen, Juho, Markus Paasiniemi, and Aki Vehtari. 2020. “Projective inference in high-dimensional problems:
Prediction and feature selection.” Electronic Journal
of Statistics 14 (1): 2155–97. https://doi.org/10.1214/20-EJS1711.
Quiroga, Miriana, Pablo G Garay, Juan M. Alonso, Juan Martin Loyola, and
Osvaldo A Martin. 2022. “Bayesian Additive Regression Trees for
Probabilistic Programming.” arXiv. https://doi.org/10.48550/ARXIV.2206.03619.
Säilynoja, Teemu, Paul-Christian Bürkner, and Aki Vehtari. 2022.
“Graphical Test for Discrete Uniformity and Its Applications in
Goodness-of-Fit Evaluation and Multiple Sample Comparison.”
Statistics and Computing 32 (2): 32. https://doi.org/10.1007/s11222-022-10090-6.
Säilynoja, Teemu, Andrew R. Johnson, Osvaldo A. Martin, and Aki Vehtari.
2025. “Recommendations for Visual Predictive Checks in Bayesian
Workflow.” https://arxiv.org/abs/2503.01509.
Säilynoja, Teemu, Marvin Schmitt, Paul-Christian Bürkner, and Aki
Vehtari. 2025. “Posterior SBC: Simulation-Based Calibration
Checking Conditional on Data.” https://arxiv.org/abs/2502.03279.
Tadesse, Mahlet G., and Marina Vannucci, eds. 2022. Handbook of
Bayesian Variable Selection.
Boca Raton: Chapman; Hall/CRC. https://doi.org/10.1201/9781003089018.
Talts, Sean, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew
Gelman. 2020. “Validating Bayesian Inference Algorithms with
Simulation-Based Calibration.” https://arxiv.org/abs/1804.06788.
Tukey, John W. 1977. Exploratory Data
Analysis. 1 edition. Pearson.
Unwin, Antony. 2024. Getting (More Out of) Graphics:
Practice and Principles of Data
Visualisation. Boca Raton: Chapman; Hall/CRC. https://doi.org/10.1201/9781003131212.
Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. “Practical
Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and
WAIC.” Statistics and Computing 27 (5): 1413–32. https://doi.org/10.1007/s11222-016-9696-4.
Vehtari, Aki, Andrew Gelman, Daniel Simpson, Bob Carpenter, and
Paul-Christian Bürkner. 2021. “Rank-Normalization, Folding, and Localization: An
Improved R̂ for Assessing
Convergence of MCMC (with Discussion).” Bayesian
Analysis 16 (2): 667–718. https://doi.org/10.1214/20-BA1221.
Venables, W. N., and B. D. Ripley. 2002. Modern Applied
Statistics with S. 4th edition. New York:
Springer. https://doi.org/10.1007/978-0-387-21706-2.
Watanabe, Sumio. 2013. “A Widely
Applicable Bayesian Information
Criterion.” Journal of Machine Learning
Research 14 (March): 867–97. https://dl.acm.org/doi/10.5555/2567709.2502609.
Wilke, Claus O. 2019. Fundamentals of Data
Visualization: A Primer on
Making Informative and Compelling
Figures. Beijing Boston Farnham Sebastopol Tokyo:
O’Reilly Media. https://clauswilke.com/dataviz/.
Wilkinson, Leland. 1999. “Dot Plots.” The
American Statistician 53 (3): 276–81. https://doi.org/10.1080/00031305.1999.10474474.
Yao, Yuling, Aki Vehtari, Daniel Simpson, and Andrew Gelman. 2018.
“Using Stacking to Average Bayesian
Predictive Distributions (with Discussion).” Bayesian
Analysis 13 (3): 917–1007. https://doi.org/10.1214/17-BA1091.