Reference
ArviZPlots.distplotArviZPlots.distplot!ArviZPlots.ecdfplotArviZPlots.energyplotArviZPlots.energyplot!ArviZPlots.energyplot!ArviZPlots.kde2dplotArviZPlots.kde2dplot!ArviZPlots.kdeplotArviZPlots.kdeplot!ArviZPlots.pairplotArviZPlots.pairplot!ArviZPlots.pairplot!ArviZPlots.rugplotRecipesBase.plotRecipesBase.plot
API
ArviZPlots.distplot! — Methoddistplot(x; kwargs...)
distplot!(x; kwargs...)Plot distribution as histogram, KDE, or ECDF.
By default continuous variables are plotted using KDEs and discrete ones using histograms
Positional Arguments
x: values to plot
Keyword Arguments
kind=:auto: By default (:auto), continuous variables are plotted using KDEs and discrete ones using histograms. The following values can override this behavior:circular=false: Select input type in(:radians, :degrees)for circular histogram or KDE plot. Iftrue, default input type is:radians. Passprojection=:polarto also plot on a polar axis; however, this will not plot correctly whencircular=:degrees.kwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments forkdeplotandhistogram.
ArviZPlots.distplot — Methoddistplot(x; kwargs...)
distplot!(x; kwargs...)Plot distribution as histogram, KDE, or ECDF.
By default continuous variables are plotted using KDEs and discrete ones using histograms
Positional Arguments
x: values to plot
Keyword Arguments
kind=:auto: By default (:auto), continuous variables are plotted using KDEs and discrete ones using histograms. The following values can override this behavior:circular=false: Select input type in(:radians, :degrees)for circular histogram or KDE plot. Iftrue, default input type is:radians. Passprojection=:polarto also plot on a polar axis; however, this will not plot correctly whencircular=:degrees.kwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments forkdeplotandhistogram.
ArviZPlots.energyplot! — Methodenergyplot(data; kwargs...)
energyplot!(data; kwargs...)Plot energy transition distribution and marginal energy distribution in HMC algorithms.
This may help to diagnose poor exploration by gradient-based algorithms like HMC or NUTS.
Positional Arguments
data: any object that can be converted to anArviZ.Datasetrepresenting asample_statsgroup with anenergyvariable.
Keyword Arguments
showbfmi=true: Iftrueadd to the plot the value of the estimated Bayesian fraction of missing information.kwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot.
ArviZPlots.energyplot! — Methodenergyplot(data; kwargs...)
energyplot!(data; kwargs...)Plot energy transition distribution and marginal energy distribution in HMC algorithms.
This may help to diagnose poor exploration by gradient-based algorithms like HMC or NUTS.
Positional Arguments
data: any object that can be converted to anArviZ.Datasetrepresenting asample_statsgroup with anenergyvariable.
Keyword Arguments
showbfmi=true: Iftrueadd to the plot the value of the estimated Bayesian fraction of missing information.kwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot.
ArviZPlots.energyplot — Methodenergyplot(data; kwargs...)
energyplot!(data; kwargs...)Plot energy transition distribution and marginal energy distribution in HMC algorithms.
This may help to diagnose poor exploration by gradient-based algorithms like HMC or NUTS.
Positional Arguments
data: any object that can be converted to anArviZ.Datasetrepresenting asample_statsgroup with anenergyvariable.
Keyword Arguments
showbfmi=true: Iftrueadd to the plot the value of the estimated Bayesian fraction of missing information.kwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot.
ArviZPlots.kde2dplot! — Methodkde2dplot(x, y; kwargs...)
kde2dplot!(x, y; kwargs...)Plot a 2D kernel density estimate (KDE) taking into account boundary conditions.
Positional Arguments
x:xcoordinates of the valuesy:ycoordinates of the values
Keyword Arguments
contour=true: Iftrue, plot the 2D KDE using contours, otherwise plot a heatmap.kwargs: Additional attributes understood by Plots.jl.
ArviZPlots.kde2dplot — Methodkde2dplot(x, y; kwargs...)
kde2dplot!(x, y; kwargs...)Plot a 2D kernel density estimate (KDE) taking into account boundary conditions.
Positional Arguments
x:xcoordinates of the valuesy:ycoordinates of the values
Keyword Arguments
contour=true: Iftrue, plot the 2D KDE using contours, otherwise plot a heatmap.kwargs: Additional attributes understood by Plots.jl.
ArviZPlots.kdeplot! — Methodkdeplot(x[, y]; kwargs...)
kdeplot!(x[, y]; kwargs...)Plot a 1D or 2D kernel density estimate (KDE) taking into account boundary conditions.
Positional Arguments
x: Values to plot.y: Values to plot. If present, a 2D KDE will be estimated. Seekde2dplot.
Keyword Arguments
bw=:default: If numeric, indicates the bandwidth and must be positive. IfSymbol, indicates the method to estimate the bandwidth and must be one of:scott,:silverman,:isjor:experimentalwhencircular=falseand:taylor(for now) whencircular=true.:defaultmeans:experimentalwhen variable is not circular and:taylorwhen it is.circular=false: Select input type in(:radians, :degrees)for circular KDE plot. Iftrue, default input type is:radians. Passprojection=:polarto also plot on a polar axis; however, this will not plot correctly whencircular=:degrees.cumulative=false: Iftrue, plot the estimated cumulative distribution functionshowrug=false: Iftrue, adds a rugplotrugspace=0.05: control theyposition of the rugplot. The larger this number the lower the rugplotkwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments forkde2dplotandrugplot.
ArviZPlots.kdeplot — Methodkdeplot(x[, y]; kwargs...)
kdeplot!(x[, y]; kwargs...)Plot a 1D or 2D kernel density estimate (KDE) taking into account boundary conditions.
Positional Arguments
x: Values to plot.y: Values to plot. If present, a 2D KDE will be estimated. Seekde2dplot.
Keyword Arguments
bw=:default: If numeric, indicates the bandwidth and must be positive. IfSymbol, indicates the method to estimate the bandwidth and must be one of:scott,:silverman,:isjor:experimentalwhencircular=falseand:taylor(for now) whencircular=true.:defaultmeans:experimentalwhen variable is not circular and:taylorwhen it is.circular=false: Select input type in(:radians, :degrees)for circular KDE plot. Iftrue, default input type is:radians. Passprojection=:polarto also plot on a polar axis; however, this will not plot correctly whencircular=:degrees.cumulative=false: Iftrue, plot the estimated cumulative distribution functionshowrug=false: Iftrue, adds a rugplotrugspace=0.05: control theyposition of the rugplot. The larger this number the lower the rugplotkwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments forkde2dplotandrugplot.
ArviZPlots.pairplot! — Methodpairplot(data)
pairplot!(data)Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal.
Positional Arguments
data: Any object that can be converted to anArviZ.InferenceDataobject. SeeArviZ.convert_to_inference_datafor details.
Keyword Arguments
group=:posterior: Specifies whichInferenceDatagroup should be plotted.var_names=nothing: Variables to be plotted. Prefix the variables by~to exclude them from the plot. Behavior modified byfilter_vars.filter_vars=nothing: interpretvar_namesasfilter_vars=nothing: real variables namesfilter_vars="like": substrings of the real variables namesfilter_vars="regex": regular expressions on the real variables names
coords=Dict(): Specific coordinates ofvar_namesto be plottedshowmarginals=false: Iftrue, pairplot will include marginal distributions for every variablekind=:scatter: Type of plot to display or list of types. Supported types are:scatterkde/kdeplot/kde2dplothist/histogram2dhexbin(Note that most backends do not support this series type)
showdivergences=false: Iftrue, divergences will be plotted in a different color, only if group is either:prioror:posterior.divergencescolor: Color of divergences markers.point_estimate=nothing: Select point estimate from:mean,:modeor:median. The point estimate will be plotted using a scatter marker and vertical/horizontal lines.kwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot,kdeplot, andkde2dplot.
ArviZPlots.pairplot! — Methodpairplot(data)
pairplot!(data)Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal.
Positional Arguments
data: Any object that can be converted to anArviZ.InferenceDataobject. SeeArviZ.convert_to_inference_datafor details.
Keyword Arguments
group=:posterior: Specifies whichInferenceDatagroup should be plotted.var_names=nothing: Variables to be plotted. Prefix the variables by~to exclude them from the plot. Behavior modified byfilter_vars.filter_vars=nothing: interpretvar_namesasfilter_vars=nothing: real variables namesfilter_vars="like": substrings of the real variables namesfilter_vars="regex": regular expressions on the real variables names
coords=Dict(): Specific coordinates ofvar_namesto be plottedshowmarginals=false: Iftrue, pairplot will include marginal distributions for every variablekind=:scatter: Type of plot to display or list of types. Supported types are:scatterkde/kdeplot/kde2dplothist/histogram2dhexbin(Note that most backends do not support this series type)
showdivergences=false: Iftrue, divergences will be plotted in a different color, only if group is either:prioror:posterior.divergencescolor: Color of divergences markers.point_estimate=nothing: Select point estimate from:mean,:modeor:median. The point estimate will be plotted using a scatter marker and vertical/horizontal lines.kwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot,kdeplot, andkde2dplot.
ArviZPlots.pairplot — Methodpairplot(data)
pairplot!(data)Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal.
Positional Arguments
data: Any object that can be converted to anArviZ.InferenceDataobject. SeeArviZ.convert_to_inference_datafor details.
Keyword Arguments
group=:posterior: Specifies whichInferenceDatagroup should be plotted.var_names=nothing: Variables to be plotted. Prefix the variables by~to exclude them from the plot. Behavior modified byfilter_vars.filter_vars=nothing: interpretvar_namesasfilter_vars=nothing: real variables namesfilter_vars="like": substrings of the real variables namesfilter_vars="regex": regular expressions on the real variables names
coords=Dict(): Specific coordinates ofvar_namesto be plottedshowmarginals=false: Iftrue, pairplot will include marginal distributions for every variablekind=:scatter: Type of plot to display or list of types. Supported types are:scatterkde/kdeplot/kde2dplothist/histogram2dhexbin(Note that most backends do not support this series type)
showdivergences=false: Iftrue, divergences will be plotted in a different color, only if group is either:prioror:posterior.divergencescolor: Color of divergences markers.point_estimate=nothing: Select point estimate from:mean,:modeor:median. The point estimate will be plotted using a scatter marker and vertical/horizontal lines.kwargs: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot,kdeplot, andkde2dplot.
Miscellaneous
ArviZPlots.ecdfplot — Methodecdfplot(x; kwargs...)
ecdfplot!(x; kwargs...)Plot the empirical cumulative distribution function (ECDF) of the data x.
Positional Arguments
x: Values to plot
Keyword Arguments
weights=nothing: Vector of weights to be used for a weighted ECDFkwargs: Additional attributes understood by Plots.jl
ArviZPlots.rugplot — Methodrugplot(x; kwargs...)
rugplot!(x; kwargs...)Make a rugplot.
Positional Arguments
x: values
Keyword Arguments
rugmarkershape=:auto: shape of marker, defaulting to perpendicular to the data axisrugsize=8: size (height) of markerrugcolor=:auto: color of markerrugalpha=:auto: alpha value (transparency) of markerrugposition=0: position of rug on non-data axiskwargs: Additional attributes understood by Plots.jl
RecipesBase.plot — Methodplot(data::ArviZ.Dataset; kwargs...)
plot!(data::ArviZ.Dataset; kwargs...)Plot the specified group of data using kwargs attributes recognized by Plots.
data is split into individual subplots based on the provided keyword arguments. Chain number for each draw is stored in the plot attribute chain and can be used by series recipes.
Positional Arguments
data: anArviZ.Datasetobject.
Keyword Arguments
var_names=nothing: Variables to be plotted. Prefix the variables by~to exclude them from the plot. Behavior modified byfilter_vars.filter_vars=nothing: interpretvar_namesasfilter_vars=nothing: real variables namesfilter_vars="like": substrings of the real variables namesfilter_vars="regex": regular expressions on the real variables names
coords=Dict(): Specific coordinates ofvar_namesto be plottedkwargs: Additional attributes understood by Plots.jl
RecipesBase.plot — Methodplot(data::InferenceData; groupname=:posterior, kwargs...)
plot!(data::InferenceData; groupname=:posterior, kwargs...)Plot the specified group of data using kwargs attributes recognized by Plots.