Reference
ArviZPlots.distplot
ArviZPlots.distplot!
ArviZPlots.ecdfplot
ArviZPlots.energyplot
ArviZPlots.energyplot!
ArviZPlots.energyplot!
ArviZPlots.kde2dplot
ArviZPlots.kde2dplot!
ArviZPlots.kdeplot
ArviZPlots.kdeplot!
ArviZPlots.pairplot
ArviZPlots.pairplot!
ArviZPlots.pairplot!
ArviZPlots.rugplot
RecipesBase.plot
RecipesBase.plot
API
ArviZPlots.distplot!
— Methoddistplot(x; kwargs...)
distplot!(x; kwargs...)
Plot distribution as histogram, KDE, or ECDF.
By default continuous variables are plotted using KDEs and discrete ones using histograms
Positional Arguments
x
: values to plot
Keyword Arguments
kind=:auto
: By default (:auto
), continuous variables are plotted using KDEs and discrete ones using histograms. The following values can override this behavior:circular=false
: Select input type in(:radians, :degrees)
for circular histogram or KDE plot. Iftrue
, default input type is:radians
. Passprojection=:polar
to also plot on a polar axis; however, this will not plot correctly whencircular=:degrees
.kwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments forkdeplot
andhistogram
.
ArviZPlots.distplot
— Methoddistplot(x; kwargs...)
distplot!(x; kwargs...)
Plot distribution as histogram, KDE, or ECDF.
By default continuous variables are plotted using KDEs and discrete ones using histograms
Positional Arguments
x
: values to plot
Keyword Arguments
kind=:auto
: By default (:auto
), continuous variables are plotted using KDEs and discrete ones using histograms. The following values can override this behavior:circular=false
: Select input type in(:radians, :degrees)
for circular histogram or KDE plot. Iftrue
, default input type is:radians
. Passprojection=:polar
to also plot on a polar axis; however, this will not plot correctly whencircular=:degrees
.kwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments forkdeplot
andhistogram
.
ArviZPlots.energyplot!
— Methodenergyplot(data; kwargs...)
energyplot!(data; kwargs...)
Plot energy transition distribution and marginal energy distribution in HMC algorithms.
This may help to diagnose poor exploration by gradient-based algorithms like HMC or NUTS.
Positional Arguments
data
: any object that can be converted to anArviZ.Dataset
representing asample_stats
group with anenergy
variable.
Keyword Arguments
showbfmi=true
: Iftrue
add to the plot the value of the estimated Bayesian fraction of missing information.kwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot
.
ArviZPlots.energyplot!
— Methodenergyplot(data; kwargs...)
energyplot!(data; kwargs...)
Plot energy transition distribution and marginal energy distribution in HMC algorithms.
This may help to diagnose poor exploration by gradient-based algorithms like HMC or NUTS.
Positional Arguments
data
: any object that can be converted to anArviZ.Dataset
representing asample_stats
group with anenergy
variable.
Keyword Arguments
showbfmi=true
: Iftrue
add to the plot the value of the estimated Bayesian fraction of missing information.kwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot
.
ArviZPlots.energyplot
— Methodenergyplot(data; kwargs...)
energyplot!(data; kwargs...)
Plot energy transition distribution and marginal energy distribution in HMC algorithms.
This may help to diagnose poor exploration by gradient-based algorithms like HMC or NUTS.
Positional Arguments
data
: any object that can be converted to anArviZ.Dataset
representing asample_stats
group with anenergy
variable.
Keyword Arguments
showbfmi=true
: Iftrue
add to the plot the value of the estimated Bayesian fraction of missing information.kwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot
.
ArviZPlots.kde2dplot!
— Methodkde2dplot(x, y; kwargs...)
kde2dplot!(x, y; kwargs...)
Plot a 2D kernel density estimate (KDE) taking into account boundary conditions.
Positional Arguments
x
:x
coordinates of the valuesy
:y
coordinates of the values
Keyword Arguments
contour=true
: Iftrue
, plot the 2D KDE using contours, otherwise plot a heatmap.kwargs
: Additional attributes understood by Plots.jl.
ArviZPlots.kde2dplot
— Methodkde2dplot(x, y; kwargs...)
kde2dplot!(x, y; kwargs...)
Plot a 2D kernel density estimate (KDE) taking into account boundary conditions.
Positional Arguments
x
:x
coordinates of the valuesy
:y
coordinates of the values
Keyword Arguments
contour=true
: Iftrue
, plot the 2D KDE using contours, otherwise plot a heatmap.kwargs
: Additional attributes understood by Plots.jl.
ArviZPlots.kdeplot!
— Methodkdeplot(x[, y]; kwargs...)
kdeplot!(x[, y]; kwargs...)
Plot a 1D or 2D kernel density estimate (KDE) taking into account boundary conditions.
Positional Arguments
x
: Values to plot.y
: Values to plot. If present, a 2D KDE will be estimated. Seekde2dplot
.
Keyword Arguments
bw=:default
: If numeric, indicates the bandwidth and must be positive. IfSymbol
, indicates the method to estimate the bandwidth and must be one of:scott
,:silverman
,:isj
or:experimental
whencircular=false
and:taylor
(for now) whencircular=true
.:default
means:experimental
when variable is not circular and:taylor
when it is.circular=false
: Select input type in(:radians, :degrees)
for circular KDE plot. Iftrue
, default input type is:radians
. Passprojection=:polar
to also plot on a polar axis; however, this will not plot correctly whencircular=:degrees
.cumulative=false
: Iftrue
, plot the estimated cumulative distribution functionshowrug=false
: Iftrue
, adds a rugplotrugspace=0.05
: control they
position of the rugplot. The larger this number the lower the rugplotkwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments forkde2dplot
andrugplot
.
ArviZPlots.kdeplot
— Methodkdeplot(x[, y]; kwargs...)
kdeplot!(x[, y]; kwargs...)
Plot a 1D or 2D kernel density estimate (KDE) taking into account boundary conditions.
Positional Arguments
x
: Values to plot.y
: Values to plot. If present, a 2D KDE will be estimated. Seekde2dplot
.
Keyword Arguments
bw=:default
: If numeric, indicates the bandwidth and must be positive. IfSymbol
, indicates the method to estimate the bandwidth and must be one of:scott
,:silverman
,:isj
or:experimental
whencircular=false
and:taylor
(for now) whencircular=true
.:default
means:experimental
when variable is not circular and:taylor
when it is.circular=false
: Select input type in(:radians, :degrees)
for circular KDE plot. Iftrue
, default input type is:radians
. Passprojection=:polar
to also plot on a polar axis; however, this will not plot correctly whencircular=:degrees
.cumulative=false
: Iftrue
, plot the estimated cumulative distribution functionshowrug=false
: Iftrue
, adds a rugplotrugspace=0.05
: control they
position of the rugplot. The larger this number the lower the rugplotkwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments forkde2dplot
andrugplot
.
ArviZPlots.pairplot!
— Methodpairplot(data)
pairplot!(data)
Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal.
Positional Arguments
data
: Any object that can be converted to anArviZ.InferenceData
object. SeeArviZ.convert_to_inference_data
for details.
Keyword Arguments
group=:posterior
: Specifies whichInferenceData
group should be plotted.var_names=nothing
: Variables to be plotted. Prefix the variables by~
to exclude them from the plot. Behavior modified byfilter_vars
.filter_vars=nothing
: interpretvar_names
asfilter_vars=nothing
: real variables namesfilter_vars="like"
: substrings of the real variables namesfilter_vars="regex"
: regular expressions on the real variables names
coords=Dict()
: Specific coordinates ofvar_names
to be plottedshowmarginals=false
: Iftrue
, pairplot will include marginal distributions for every variablekind=:scatter
: Type of plot to display or list of types. Supported types are:scatter
kde
/kdeplot
/kde2dplot
hist
/histogram2d
hexbin
(Note that most backends do not support this series type)
showdivergences=false
: Iftrue
, divergences will be plotted in a different color, only if group is either:prior
or:posterior
.divergencescolor
: Color of divergences markers.point_estimate=nothing
: Select point estimate from:mean
,:mode
or:median
. The point estimate will be plotted using a scatter marker and vertical/horizontal lines.kwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot
,kdeplot
, andkde2dplot
.
ArviZPlots.pairplot!
— Methodpairplot(data)
pairplot!(data)
Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal.
Positional Arguments
data
: Any object that can be converted to anArviZ.InferenceData
object. SeeArviZ.convert_to_inference_data
for details.
Keyword Arguments
group=:posterior
: Specifies whichInferenceData
group should be plotted.var_names=nothing
: Variables to be plotted. Prefix the variables by~
to exclude them from the plot. Behavior modified byfilter_vars
.filter_vars=nothing
: interpretvar_names
asfilter_vars=nothing
: real variables namesfilter_vars="like"
: substrings of the real variables namesfilter_vars="regex"
: regular expressions on the real variables names
coords=Dict()
: Specific coordinates ofvar_names
to be plottedshowmarginals=false
: Iftrue
, pairplot will include marginal distributions for every variablekind=:scatter
: Type of plot to display or list of types. Supported types are:scatter
kde
/kdeplot
/kde2dplot
hist
/histogram2d
hexbin
(Note that most backends do not support this series type)
showdivergences=false
: Iftrue
, divergences will be plotted in a different color, only if group is either:prior
or:posterior
.divergencescolor
: Color of divergences markers.point_estimate=nothing
: Select point estimate from:mean
,:mode
or:median
. The point estimate will be plotted using a scatter marker and vertical/horizontal lines.kwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot
,kdeplot
, andkde2dplot
.
ArviZPlots.pairplot
— Methodpairplot(data)
pairplot!(data)
Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal.
Positional Arguments
data
: Any object that can be converted to anArviZ.InferenceData
object. SeeArviZ.convert_to_inference_data
for details.
Keyword Arguments
group=:posterior
: Specifies whichInferenceData
group should be plotted.var_names=nothing
: Variables to be plotted. Prefix the variables by~
to exclude them from the plot. Behavior modified byfilter_vars
.filter_vars=nothing
: interpretvar_names
asfilter_vars=nothing
: real variables namesfilter_vars="like"
: substrings of the real variables namesfilter_vars="regex"
: regular expressions on the real variables names
coords=Dict()
: Specific coordinates ofvar_names
to be plottedshowmarginals=false
: Iftrue
, pairplot will include marginal distributions for every variablekind=:scatter
: Type of plot to display or list of types. Supported types are:scatter
kde
/kdeplot
/kde2dplot
hist
/histogram2d
hexbin
(Note that most backends do not support this series type)
showdivergences=false
: Iftrue
, divergences will be plotted in a different color, only if group is either:prior
or:posterior
.divergencescolor
: Color of divergences markers.point_estimate=nothing
: Select point estimate from:mean
,:mode
or:median
. The point estimate will be plotted using a scatter marker and vertical/horizontal lines.kwargs
: Additional attributes understood by Plots.jl. In particular, see keyword arguments fordistplot
,kdeplot
, andkde2dplot
.
Miscellaneous
ArviZPlots.ecdfplot
— Methodecdfplot(x; kwargs...)
ecdfplot!(x; kwargs...)
Plot the empirical cumulative distribution function (ECDF) of the data x
.
Positional Arguments
x
: Values to plot
Keyword Arguments
weights=nothing
: Vector of weights to be used for a weighted ECDFkwargs
: Additional attributes understood by Plots.jl
ArviZPlots.rugplot
— Methodrugplot(x; kwargs...)
rugplot!(x; kwargs...)
Make a rugplot.
Positional Arguments
x
: values
Keyword Arguments
rugmarkershape=:auto
: shape of marker, defaulting to perpendicular to the data axisrugsize=8
: size (height) of markerrugcolor=:auto
: color of markerrugalpha=:auto
: alpha value (transparency) of markerrugposition=0
: position of rug on non-data axiskwargs
: Additional attributes understood by Plots.jl
RecipesBase.plot
— Methodplot(data::ArviZ.Dataset; kwargs...)
plot!(data::ArviZ.Dataset; kwargs...)
Plot the specified group of data
using kwargs
attributes recognized by Plots.
data
is split into individual subplots based on the provided keyword arguments. Chain number for each draw is stored in the plot attribute chain
and can be used by series recipes.
Positional Arguments
data
: anArviZ.Dataset
object.
Keyword Arguments
var_names=nothing
: Variables to be plotted. Prefix the variables by~
to exclude them from the plot. Behavior modified byfilter_vars
.filter_vars=nothing
: interpretvar_names
asfilter_vars=nothing
: real variables namesfilter_vars="like"
: substrings of the real variables namesfilter_vars="regex"
: regular expressions on the real variables names
coords=Dict()
: Specific coordinates ofvar_names
to be plottedkwargs
: Additional attributes understood by Plots.jl
RecipesBase.plot
— Methodplot(data::InferenceData; groupname=:posterior, kwargs...)
plot!(data::InferenceData; groupname=:posterior, kwargs...)
Plot the specified group of data
using kwargs
attributes recognized by Plots.