Working with InferenceData
using ArviZ, DimensionalData, StatisticsHere we present a collection of common manipulations you can use while working with InferenceData.
Let's load one of ArviZ's example datasets. posterior, posterior_predictive, etc are the groups stored in idata, and they are stored as Datasets. In this HTML view, you can click a group name to expand a summary of the group.
idata = load_example_data("centered_eight")posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
posterior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:41.460544"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
log_likelihood
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:37.487399"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
sample_stats
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 16 layers:
:max_energy_error Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:energy_error Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:lp Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:index_in_trajectory Int64 dims: Dim{:draw}, Dim{:chain} (500×4)
:acceptance_rate Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:diverging Bool dims: Dim{:draw}, Dim{:chain} (500×4)
:process_time_diff Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:n_steps Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:perf_counter_start Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:largest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (500×4)
:smallest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (500×4)
:step_size_bar Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:step_size Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:energy Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:tree_depth Int64 dims: Dim{:draw}, Dim{:chain} (500×4)
:perf_counter_diff Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.324929"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.602116"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.604969"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
observed_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:obs Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.606375"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
constant_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:scores Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.607471"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
Datasets are DimensionalData.AbstractDimStacks and can be used identically. The variables a Dataset contains are called "layers", and dimensions of the same name that appear in more than one layer within a Dataset must have the same indices.
InferenceData behaves like a NamedTuple and can be used similarly. Note that unlike a NamedTuple, the groups always appear in a specific order.
length(idata) # number of groups8keys(idata) # group names(:posterior, :posterior_predictive, :log_likelihood, :sample_stats, :prior, :prior_predictive, :observed_data, :constant_data)Get the dataset corresponding to a single group
Group datasets can be accessed both as properties or as indexed items.
post = idata.posteriorDataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"post is the dataset itself, so this is a non-allocating operation.
idata[:posterior] === posttrueInferenceData supports a more advanced indexing syntax, which we'll see later.
Getting a new InferenceData with a subset of groups
We can index by a collection of group names to get a new InferenceData with just those groups. This is also non-allocating.
idata_sub = idata[(:posterior, :posterior_predictive)]posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
posterior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:41.460544"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
Adding groups to an InferenceData
InferenceData is immutable, so to add or replace groups we use merge to create a new object.
merge(idata_sub, idata[(:observed_data, :prior)])posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
posterior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:41.460544"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.602116"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
observed_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:obs Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.606375"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
We can also use Base.setindex to out-of-place add or replace a single group.
Base.setindex(idata_sub, idata.prior, :prior)posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
posterior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:41.460544"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.602116"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
Add a new variable
Dataset is also immutable. So while the values within the underlying data arrays can be mutated, layers cannot be added or removed from Datasets, and groups cannot be added/removed from InferenceData.
Instead, we do this out-of-place also using merge.
merge(post, (log_tau=log.(post[:tau]),))Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 4 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:log_tau Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"Obtain an array for a given parameter
Let’s say we want to get the values for mu as an array. Parameters can be accessed with either property or index syntax.
post.tau500×4 DimArray{Float64,2} tau with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
0 1 2 3
0 4.72574 1.97083 3.50128 6.07326
1 3.90899 2.04903 2.89324 3.77187
2 4.84403 2.12376 4.27329 3.17054
3 1.8567 3.39183 11.8965 6.00193
4 4.74841 4.84368 7.11325 3.28632
5 3.51387 10.8872 7.18892 2.16314
⋮
493 5.97049 1.67101 5.19169 8.23756
494 8.15827 1.61268 4.96249 3.13966
495 7.56498 1.61268 3.56495 2.78607
496 2.24702 1.84816 2.55959 4.28196
497 1.89384 2.17459 4.08978 2.74061
498 5.92006 1.32755 2.72017 2.93238
499 4.3259 1.21199 1.91701 4.46125post[:tau] === post.tautrueTo remove the dimensions, just use parent to retrieve the underlying array.
parent(post.tau)500×4 Matrix{Float64}:
4.72574 1.97083 3.50128 6.07326
3.90899 2.04903 2.89324 3.77187
4.84403 2.12376 4.27329 3.17054
1.8567 3.39183 11.8965 6.00193
4.74841 4.84368 7.11325 3.28632
3.51387 10.8872 7.18892 2.16314
4.20898 4.01889 9.0977 7.68505
2.6834 4.28584 7.84286 4.08612
1.16889 3.70403 17.1548 5.1157
1.21052 3.15829 16.7573 4.86939
⋮
2.05742 1.09087 10.8168 5.08507
2.72536 1.09087 2.16788 6.1552
5.97049 1.67101 5.19169 8.23756
8.15827 1.61268 4.96249 3.13966
7.56498 1.61268 3.56495 2.78607
2.24702 1.84816 2.55959 4.28196
1.89384 2.17459 4.08978 2.74061
5.92006 1.32755 2.72017 2.93238
4.3259 1.21199 1.91701 4.46125Get the dimension lengths
Let’s check how many groups are in our hierarchical model.
size(idata.observed_data, :school)8Get coordinate/index values
What are the names of the groups in our hierarchical model? You can access them from the coordinate name school in this case.
DimensionalData.index(idata.observed_data, :school)8-element Vector{String}:
"Choate"
"Deerfield"
"Phillips Andover"
"Phillips Exeter"
"Hotchkiss"
"Lawrenceville"
"St. Paul's"
"Mt. Hermon"Get a subset of chains
Let’s keep only chain 0 here. For the subset to take effect on all relevant InferenceData groups – posterior, sample_stats, log_likelihood, and posterior_predictive – we will index InferenceData instead of Dataset.
Here we use DimensionalData's At selector. Its other selectors are also supported.
idata[chain=At(0)]posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
posterior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:41.460544"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
log_likelihood
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:37.487399"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
sample_stats
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points
and 16 layers:
:max_energy_error Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:energy_error Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:lp Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:index_in_trajectory Int64 dims: Dim{:draw}, Dim{:chain} (500×1)
:acceptance_rate Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:diverging Bool dims: Dim{:draw}, Dim{:chain} (500×1)
:process_time_diff Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:n_steps Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:perf_counter_start Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:largest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (500×1)
:smallest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (500×1)
:step_size_bar Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:step_size Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:energy Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:tree_depth Int64 dims: Dim{:draw}, Dim{:chain} (500×1)
:perf_counter_diff Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.324929"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.602116"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.604969"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
observed_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:obs Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.606375"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
constant_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:scores Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.607471"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
Note that in this case, prior only has a chain of 0. If it also had the other chains, we could have passed chain=At([0, 2]) to subset by chains 0 and 2.
If we used idata[chain=[0, 2]] without the At selector, this is equivalent to idata[chain=DimensionalData.index(idata.posterior, :chain)[0, 2]], that is, [0, 2] indexes an array of dimension indices, which here would error. But if we had requested idata[chain=[1, 2]] we would not hit an error, but we would index the wrong chains. So it's important to always use a selector to index by values of dimension indices.
Remove the first $n$ draws (burn-in)
Let’s say we want to remove the first 100 draws from all the chains and all InferenceData groups with draws. To do this we use the .. syntax from IntervalSets.jl, which is exported by DimensionalData.
idata[draw=100 .. Inf]posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[100, 101, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×400×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
posterior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[100, 101, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×400×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:41.460544"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
log_likelihood
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[100, 101, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×400×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:37.487399"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
sample_stats
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[100, 101, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 16 layers:
:max_energy_error Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:energy_error Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:lp Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:index_in_trajectory Int64 dims: Dim{:draw}, Dim{:chain} (400×4)
:acceptance_rate Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:diverging Bool dims: Dim{:draw}, Dim{:chain} (400×4)
:process_time_diff Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:n_steps Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:perf_counter_start Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:largest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (400×4)
:smallest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (400×4)
:step_size_bar Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:step_size Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:energy Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:tree_depth Int64 dims: Dim{:draw}, Dim{:chain} (400×4)
:perf_counter_diff Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.324929"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[100, 101, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:tau Float64 dims: Dim{:draw}, Dim{:chain} (400×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×400×1)
:mu Float64 dims: Dim{:draw}, Dim{:chain} (400×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.602116"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[100, 101, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×400×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.604969"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
observed_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:obs Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.606375"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
constant_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:scores Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.607471"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
If you check the object you will see that the groups posterior, posterior_predictive, prior, and sample_stats have 400 draws compared to idata, which has 500. The group observed_data has not been affected because it does not have the draw dimension.
Alternatively, you can change a subset of groups by combining indexing styles with merge. Here we use this to build a new InferenceData where we have discarded the first 100 draws only from posterior.
merge(idata, idata[(:posterior,), draw=100 .. Inf])posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[100, 101, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×400×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (400×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
posterior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:41.460544"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
log_likelihood
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:37.487399"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
sample_stats
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 16 layers:
:max_energy_error Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:energy_error Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:lp Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:index_in_trajectory Int64 dims: Dim{:draw}, Dim{:chain} (500×4)
:acceptance_rate Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:diverging Bool dims: Dim{:draw}, Dim{:chain} (500×4)
:process_time_diff Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:n_steps Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:perf_counter_start Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:largest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (500×4)
:smallest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (500×4)
:step_size_bar Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:step_size Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:energy Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:tree_depth Int64 dims: Dim{:draw}, Dim{:chain} (500×4)
:perf_counter_diff Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.324929"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.602116"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.604969"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
observed_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:obs Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.606375"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
constant_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:scores Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.607471"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
Compute posterior mean values along draw and chain dimensions
To compute the mean value of the posterior samples, do the following:
mean(post)(mu = 4.485933103402338, theta = 4.911515591394205, tau = 4.124222787491913)This computes the mean along all dimensions, discarding all dimensions and returning the result as a NamedTuple. This may be what you wanted for mu and tau, which have only two dimensions (chain and draw), but maybe not what you expected for theta, which has one more dimension school.
You can specify along which dimension you want to compute the mean (or other functions), which instead returns a Dataset.
mean(post; dims=(:chain, :draw))Dataset with dimensions:
Dim{:draw} Sampled{Float64} Float64[249.5] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Float64} Float64[1.5] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (1×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×1×1)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (1×1)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"The singleton dimensions of chain and draw now contain meaningless indices, so you may want to discard them, which you can do with dropdims.
dropdims(mean(post; dims=(:chain, :draw)); dims=(:chain, :draw))Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims:
:theta Float64 dims: Dim{:school} (8)
:tau Float64 dims:
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"Renaming a dimension
We can rename a dimension in a Dataset using DimensionalData's set method:
theta_bis = set(post.theta; school=:school_bis)8×500×4 DimArray{Float64,3} theta with dimensions:
Dim{:school_bis} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
[:, :, 1]
0 … 497 498 499
"Choate" 12.3207 -0.213828 10.4025 6.66131
"Deerfield" 9.90537 1.35515 6.90741 7.41377
"Phillips Andover" 14.9516 6.98269 -4.96414 -9.3226
"Phillips Exeter" 11.0115 3.71681 3.13584 2.69192
"Hotchkiss" 5.5796 … 5.32446 -2.2243 -0.502331
"Lawrenceville" 16.9018 6.96589 -2.83504 -4.25487
"St. Paul's" 13.1981 4.9302 5.39106 7.56657
"Mt. Hermon" 15.0614 3.0586 6.38124 9.98762
[and 3 more slices...]We can use this, for example, to broadcast functions across multiple arrays, automatically matching up shared dimensions, using DimensionalData.broadcast_dims.
theta_school_diff = broadcast_dims(-, post.theta, theta_bis)8×500×4×8 DimArray{Float64,4} theta with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school_bis} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
[:, :, 1, 1]
0 … 497 498 499
"Choate" 0.0 0.0 0.0 0.0
"Deerfield" -2.41532 1.56898 -3.49509 0.752459
"Phillips Andover" 2.63093 7.19652 -15.3666 -15.9839
"Phillips Exeter" -1.3092 3.93064 -7.26666 -3.96939
"Hotchkiss" -6.74108 … 5.53829 -12.6268 -7.16364
"Lawrenceville" 4.58111 7.17972 -13.2375 -10.9162
"St. Paul's" 0.877374 5.14403 -5.01144 0.905263
"Mt. Hermon" 2.74068 3.27243 -4.02126 3.32631
[and 31 more slices...]Compute and store posterior pushforward quantities
We use “posterior pushfoward quantities” to refer to quantities that are not variables in the posterior but deterministic computations using posterior variables.
You can compute these pushforward operations and store them as a new variable in a copy of the posterior group.
Here we'll create a new InferenceData with theta_school_diff in the posterior:
idata_new = Base.setindex(idata, merge(post, (; theta_school_diff)), :posterior)posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:school_bis} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 4 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:theta_school_diff Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain}, Dim{:school_bis} (8×500×4×8)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
posterior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:41.460544"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
log_likelihood
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×4)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:37.487399"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
sample_stats
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points
and 16 layers:
:max_energy_error Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:energy_error Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:lp Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:index_in_trajectory Int64 dims: Dim{:draw}, Dim{:chain} (500×4)
:acceptance_rate Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:diverging Bool dims: Dim{:draw}, Dim{:chain} (500×4)
:process_time_diff Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:n_steps Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:perf_counter_start Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:largest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (500×4)
:smallest_eigval Union{Missing, Float64} dims: Dim{:draw}, Dim{:chain} (500×4)
:step_size_bar Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:step_size Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:energy Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
:tree_depth Int64 dims: Dim{:draw}, Dim{:chain} (500×4)
:perf_counter_diff Float64 dims: Dim{:draw}, Dim{:chain} (500×4)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.324929"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.602116"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
prior_predictive
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0] ForwardOrdered Irregular Points
and 1 layer:
:obs Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×1)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.604969"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
observed_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:obs Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.606375"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
constant_data
Dataset with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 1 layer:
:scores Float64 dims: Dim{:school} (8)
with metadata Dict{String, Any} with 4 entries:
"created_at" => "2022-10-13T14:37:26.607471"
"inference_library_version" => "4.2.2"
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
Once you have these pushforward quantities in an InferenceData, you’ll then be able to plot them with ArviZ functions, calculate stats and diagnostics on them, or save and share the InferenceData object with the pushforward quantities included.
Here we compute the mcse of theta_school_diff:
mcse(idata_new.posterior).theta_school_diff8×8 DimArray{Float64,2} theta_school_diff with dimensions:
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered,
Dim{:school_bis} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
"Choate" … "St. Paul's" "Mt. Hermon"
"Choate" 0.0 0.117476 0.219695
"Deerfield" 0.191463 0.16484 0.189386
"Phillips Andover" 0.255636 0.258001 0.160477
"Phillips Exeter" 0.162782 0.156724 0.144923
"Hotchkiss" 0.282881 … 0.283969 0.189015
"Lawrenceville" 0.259065 0.251988 0.178094
"St. Paul's" 0.117476 0.0 0.222054
"Mt. Hermon" 0.219695 0.222054 0.0Advanced subsetting
To select the value corresponding to the difference between the Choate and Deerfield schools do:
school_idx = ["Choate", "Hotchkiss", "Mt. Hermon"]
school_bis_idx = ["Deerfield", "Choate", "Lawrenceville"]
theta_school_diff[school=At(school_idx), school_bis=At(school_bis_idx)]3×500×4×3 DimArray{Float64,4} theta with dimensions:
Dim{:school} Categorical{String} String[Choate, Hotchkiss, Mt. Hermon] Unordered,
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[0, 1, 2, 3] ForwardOrdered Irregular Points,
Dim{:school_bis} Categorical{String} String[Deerfield, Choate, Lawrenceville] Unordered
[:, :, 1, 1]
0 1 … 497 498 499
"Choate" 2.41532 2.1563 -1.56898 3.49509 -0.752459
"Hotchkiss" -4.32577 -1.31781 3.96931 -9.13171 -7.9161
"Mt. Hermon" 5.156 -2.9526 1.70345 -0.526168 2.57385
[and 11 more slices...]Add new chains using concat
Suppose after checking the mcse and realizing you need more samples, you rerun the model with two chains and obtain an idata_rerun object.
idata_rerun = InferenceData(; posterior=set(post[chain=At([0, 1])]; chain=[4, 5]))posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} Int64[0, 1, …, 498, 499] ForwardOrdered Irregular Points,
Dim{:chain} Sampled{Int64} Int64[4, 5] ForwardOrdered Irregular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×2)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×2)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×2)
with metadata Dict{String, Any} with 6 entries:
"created_at" => "2022-10-13T14:37:37.315398"
"inference_library_version" => "4.2.2"
"sampling_time" => 7.48011
"tuning_steps" => 1000
"arviz_version" => "0.13.0.dev0"
"inference_library" => "pymc"
You can combine the two using concat.
concat(idata[[:posterior]], idata_rerun; dim=:chain)posterior
Dataset with dimensions:
Dim{:draw} Sampled{Int64} 0:499 ForwardOrdered Regular Points,
Dim{:chain} Sampled{Int64} 0:5 ForwardOrdered Regular Points,
Dim{:school} Categorical{String} String[Choate, Deerfield, …, St. Paul's, Mt. Hermon] Unordered
and 3 layers:
:mu Float64 dims: Dim{:draw}, Dim{:chain} (500×6)
:theta Float64 dims: Dim{:school}, Dim{:draw}, Dim{:chain} (8×500×6)
:tau Float64 dims: Dim{:draw}, Dim{:chain} (500×6)
with metadata OrderedCollections.OrderedDict{Symbol, Any} with 6 entries:
:created_at => "2022-10-13T14:37:37.315398"
:inference_library_version => "4.2.2"
:sampling_time => 7.48011
:tuning_steps => 1000
:arviz_version => "0.13.0.dev0"
:inference_library => "pymc"